انامل حسابيه
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.


اهلا وسهلا بكم
 
الرئيسيةأحدث الصورالتسجيلدخول

 

 مقتطفات رياضية

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
Admin



عدد المساهمات : 15
تاريخ التسجيل : 10/05/2010

مقتطفات رياضية Empty
مُساهمةموضوع: مقتطفات رياضية   مقتطفات رياضية Icon_minitimeالأربعاء مايو 19, 2010 1:29 am

مقتطفات رياضية :

أولا : نظريات فيرما :

نظرية فيرما المستعصية :

لا يوجد حل صحيح غير تافه للمعادلة : xn + yn = zn , حيث n > 2 .

ولقد حاول فيرما أن يقدم حلا لهذا الحدس ، حيث قدم برهانا لعدم وجود حل غير تافه للمعادلة :

x4 + y4 = z4 مستخدما طريقة تعرف اليوم بطريقة فيرما غير منتهية التناقض .

والجدير بالذكر أن فيرما لم يكن رياضيا بل كان محاميا هاويا ، وعلى الرغم من ذلك فقد أغنى فروعا كثيرة في الرياضيات ومن أهمها وضعه لنظرية الأعداد .

وبعد مضي فترة من الزمن استطاع عالم الرياضيات البريطاني أويلر برهنة النظرية ،
والذي قدمها بصفحات عديدة كانت محل إعجاب الرياضيين عالميا ، كما أنه حصل على جائزة الملك فيصل العالمية ،
ولوكانت جائزة نوبل تعطى في مجال الرياضيات لحصل عليها ، وقد قتل باليمن .

نظرية فيرما في التحليل :

تعتمد هذه النظرية على كتابة العدد على شكل فرق مربعين
ثانيا : قابلية القسمة :

1) قابلية القسمة على قوى العدد 5 :

وهو مشابه لقابلية القسمة على قوى العدد 2 لأن 2 × 5 = 10

مثال : قرر فيما إذا كان العدد 105117213127625 يقبل القسمة على العدد 125 ؟

الحل : 125 = 53 ، نختبر آخر ثلاث مراتب ونلاحظ :625
يقبل القسمة على 53 إذن العدد المطلوب يقبل القسمة على 125

2) قابلية القسمة على العدد 11 :

n ≡ (-1) mod 11 (10)

مثال : قرر هل العدد 723160823 يقبل القسمة على 11 أم لا ؟

الحل : (3-2) + (8-0) + (6-1) + (3-2) + (7-0) = 22

وبما أن 22 تقبل القسمة على 11 فإن العدد المطلوب يقبل القسمة على 11 .

3) قابلية القسمة على 7 ، 11 ، 13 :

بما أن 7 × 11 × 13 = 1001 فإن n ≡ (-1)n mod 1001 (103)

مثال : هل العدد 59358208 يقبل القسمة على 7 ، 11 ، 13 ؟

الحل : (208) - (358) + (059) = -91

العدد - 91 يقبل القسمة على 7 ، 13 بينما لايقبل القسمة على 11

إذن العدد المعطى يقبل القسمة على 7 ، 13 ولا يقبل القسمة على 11 .

4) قابلية القسمة على 13 :

يقبل العدد القسمة على 13 إذا كان ناتج ك أدناه يقبل القسمة على 13 .

ك = (4ح + ع - 3م) - (4ح ف + ع ف - 3م ف ) + ( ....) - (.....) + ....

حيث : ح : آحاد ، ع : عشرات ، م : مئات ،ف : ألوف .

مثال : هل العدد : 2734056 يقبل القسمة على 13 ؟

الحل : ك = (4×6 + 5 - 3 × 0) - (4×4 + 3 - 3×7) + (4×2) = 39

وبما أن 39 يقبل القسمة على 13 فإن العدد المطلوب يقبل القسمة على 13 .

ملحوظة : هذه ليست قاعدة متفق عليها
ثالثا : الدوال الرياضية في حقل الإعداد المركبة :

1) الدوال التحليلية :

إذا كانت الدالة F معرفة في جوار النقطة Z1 بحيث F قابلة للإشتقاق في Z1 وفي جوار لـ Z1 عندئذ تسمى F دالة تحليلية في Z1 .

ملحوظة : في التبولوجيا ، جوار نقطة Z1 هي مجموعة على الهيئة {Z : |Z - Z1| <e K e > 0}

Z1= X1 + i Y1 , ويرمز لها بالرمز : (D(Z1, e , حيث X1 , Y1 أعداد حقيقية .

مثال : F(z) = 2z2 - 3z + i

دالة تحليلية لكل عدد مركب ، لأنها قابلة للاشتقاق عند كل نقطة z في حقل الاعداد المركبة .

2) الدوال التوافقية (Harmonic Function) :

إذا كانت (U(x,y دالة معرفة على نطاق D بحيث أنها ومشتقاتها الجزئية الأولى والثانية متصلة في D
وكانت تحقق معادلة لابلاس (Laplace : Uxx + Uyy = 0) .

عندئذ تسمى (U(x,y دالة توافقية في D .

مثال : الدالة F(z) =z3 = (x+iy)3 دالة توافقية لأن :

F(z) = x3-3xy2 + i(3x2y) - iy3

= (x3 - 3xy2) + i(3x2y-y3)

= (U(x,y) + i V(x,y

وكل من الدالتين U , V دالتين توافقيتين في جميع نقط مجموعة الأعداد المركبة (جميع رتب المشتقات لكل منهما موجودة ومتصلة في D ) .

3) الدالة الأسية :

F(z) = ez = ex + iy

= (ex (cos y + i sin y , الدالة معرفة لكل Z في الاعداد المركبة .

4) الدوال المئلئية :

SIN(Z) =eiz - e-iz / 2i , COS(Z) =eiz + e-iz / 2 .

(TAN(Z) =SIN(Z) / COS(Z) , COT(Z) = 1 / TAN(Z .

(SEC(Z) = 1 / COS(Z) , CSC(Z) = 1 / SIN(Z .

ملحوظة : المتطابقات المثلثية في المتغير الحقيقي تسري للدوال المثلثية في المتغير المركب .

5) الدوال الزائدية :

SINh(Z) =ez - e-z / 2 , COSh(Z) =ez + e-z / 2 .

(TANh(Z) =SINh(Z) / COSh(Z) , COTh(Z) = 1 / TANh(Z .

(SECh(Z) = 1 / COSh(Z) , CSCh(Z) = 1 / SINh(Z .

ملحوظة : المتطابقات للدوال الزائدية الحقيقية تبقى صحيحة للدوال الزائدية المركبة .

6) الدوال اللوغاريتمية :
Log(z) = Log(r) + iQ , r = |z| , Q =Arg(z) , z # 0 .

ملحوظة : - (Arg(z تعني قيم الزاوية Q .

- تعارف المتخصصون على أن Log تدل على Ln

اسهامات العرب في الرياضيات :



أولا : في مجال الحساب :

يعتبر علماء العرب أول من طور العمليات الحسابية الأربع ، الجمع والتضعيف ، التنصيف ، التفريق ،
الضرب والقسمة ، كما أن لهم الفضل في عمليات استخراج الجذور .

وقد قاموا بتقسيم الأعداد إلى ثلاثة أنواع هي :

1- أعداد تامة : وهي التي قننها أبو البنا المراكشي بقوله أن العدد التام هو العدد الذي يساوي مجموع أجزاءه (قواسمه) .

العدد 6 عدد تام لأن 6 = 1 + 2 + 3

2- أعداد زائدة : العدد الزائد هو ما يكون أقل من مجموع أجزائه (قواسمه) .

العدد 12 عدد زائد لأن 12 < 1+2+3+4+6

3- العدد الناقص : وهو العدد الذي يكون أكبر من مجموع أجزائه .

مثل العدد 10 > 1+2+5


كما أوجد ثابت بن قرة قاعدة للأعداد المتحابة وهي أن يكون مجموع قواسم أ حد العددين مساويا للآخر فمثلا :

(220 ،284) عددان متاحابان لأن :

مجموع قواسم 220 : 1+2+4+5+10+11+20+22+44+55+110 =284

مجموع قواسم 284 : 1+2+4+71+142 =220

كما قام الكاشي بوضع الكسور العشرية في كتاب الرسالة المحيطية ولأول مرة بالتاريخ ، حيث عبرعن:

2ط = 6.283185.7179865

ثانيا : في مجال الجبر:

أول كتاب عرف في الجبر هو كتاب الخوارزمي : الجبر والمقابلة ، والذي صنف به المعادلات كما في الشكل المقابل .

وقد ذكر الخوارزمي بأن الجبر يقوم على ثلاث ضروب هي : جذور وأموال وعدد .

المال يقابل س2 ، والجذر أسماه شيئا ، وميز العددبالشىء والمال بتسميته دراهم ، حيث قال مال وجذر يعادل درهمين .

وعند جبر المعادلة يقوم بإزالة الحدود السالبة ، وعند المقابلة يقوم بحذف الحدود المتشابهة من الطرفين .

كما توصل العرب إلى حل معادلات من قوى أعلى على الصورة :

م س2ن + ب س ن = جـ

وقد قدم العرب حلولا لمعادلات من الدرجة الثالثة والرابعة واكتشفو النظرية التي تقول :

مجموع مكعبين لايكون عددا مكعبا ، وهذه هي أساس نظرية فيرما الشهيرة :

أ ن + ب ن = جـ ن التي لايمكن حلها عند ن>2


ثالثا : في مجال الهندسة وحساب المثلثات :

لقد ترجم العرب كتاب أصول اقليدس ، وزادوا عليه ، حيث قدم ابن الهيثم نظريات ومسائل منها "كيف ترسم مستقيمين من نقطتين
مفروضتين داخل دائرة معلومة إلى أي نقطة مفروضة على محيطها بحيث يصنعان مع المماس المرسوم من تلك النقطة زاويتين متساويتين " .

كما قدم البيروني برهانا لمساحة المثلث بدلالة أضلاعه .كما أن الغرب عرفوا هندسة إقليدس عن طريق العرب .

ومن مآثر العرب في حساب المثلثات هو استخدامهم النسب المثلثية الست حيث كشف التباني العلاقة:

جتاأ =جتاب جتاجـ + جاب جاجـ جتاأ ، الخاصة بالمثلث الكروي المائل حيث أن أ ، ب ، جـ تمثل أضلاع المثلث ، أ زاوية أ بالمثلث.

واكتشف جابر بن الأفلح العلاقة : جتاب = جتاب جاأ ، الخاصة بالمثلث الكروي القائم الزاوية في جـ .

كما اكتشف التباني قانون إيجاد ارتفاع الشمس :

س = أجا (90 - أ) \ جاأ

وقد اكتشف العرب العلاقات بين الجيب والمماس والقاطع ونظائرهما ،
ومعرفة القاعدة الأساسية لمساحة المثلثات الكروية وعملوا الجداول الرياضية للمماس والقاطع وقاطع التمام .

وقد حل القباني المعادلة جاس\جتاس =1 ، حيث توصل إلى أن :

جاس = س \ (جذر س2 + 1) .

وتوصل ابن يونس إلى القانون :

جتاس جتاص =1\2 جتا(س+ص) + 1\2 جتا(س - ص) .
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://anml.rigala.net
 
مقتطفات رياضية
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
انامل حسابيه :: مجلة الرياضيات المنوعه-
انتقل الى: